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Abstract

The analytical solutions of unsteady heat conduction with variable thermal properties (thermal conductivity, density and

specific heat are functions of temperature or coordinates) are meaningful in theory. In addition, they are very useful to the computational

heat conduction to check the numerical solutions and to develop numerical schemes, grid generation methods and so forth. Such solutions
in rectangular coordinates have been derived by the authors. Some other solutions for 1-D and 2-D axisymmetrical heat conduction in cylin-
drical coordinates are given in this paper to promote the heat conduction theory and to develop the relative computational heat conduction.

Keywords: analytical solution, heat conduction, nonlinear, variable thermal property, cylindrical coordinates.

Analytical solutions of constant coefficient heat
conduction equations played a key role in the early de-

(11, Practically, various

velopment of heat conduction
thermal properties ( thermal conductivity, density and
specific heat) are variable and the heat conduction
process is commonly unsteady, it is not easy to derive
the analytical solutions. According to the knowledge
of the authors, perhaps no any algebraically explicit
analytical solutions of unsteady heat conduction with
variable thermal properties have been found in the
open literatures so far except for two papers recently

(23] in rectangular coordinates.

given by the authors
In order to develop the heat conduction theory, it is
valuable to find out some new analytical solutions in
cylindrical coordinates. For the same reason, the first
author recently provided some algebraically explicit
analytical solutions of unsteady nonlinear compressible

[4~7]

flow to develop aerodynamics.

Besides theoretical meaning, analytical solutions
can also be applied to check the accuracy, conver-
gence and effectiveness of various numerical computa-
tion methods and their differencing schemes, grid
generation ways and so on. For example, in the fluid
dynamics field, several analytical solutions which can
simulate the 3-D potential flow in turbine cascades
were given by the first author et al.!®!, these solu-
tions have been used successfully by scientists to
check their computational methods and computer

codes'87 121

Therefore, continuing the work presented in
Refs.[2,3], some algebraically explicit analytical so-
lutions of unsteady geometrically 1-D and 2-D axi-
symmetrical heat conduction equations with variable
thermal properties are derived in cylindrical coordi-

nates.

It is emphasized that the main aim of this paper
is to obtain some possible explicit analytical solutions
of the heat conduction equation with variable coeffi-
cients but not a specified solution for given initial and
boundary conditions, therefore, the initial and
boundary conditions are indeterminate before deriva-
tion and deduced from the solutions afterward. It
makes the derivation procedure easier. In order to de-
rive explicit analytical solutions, another important
point is that the function of the thermal conductivity
and the function of the density and the specific heat
have to be matchable in some degree. Moreover, in
some cases a skill (the method of separating variables
with addition!® 1) is applied to solve the equation.
It is assumed that the unknown solution 8 = 8(¢t, z, r)
=T(t)+Z(z)+ R(r) replaces 8 = (¢, =, r) =
T(t)-Z(z)+-R(r) in the common method of sepa-
rating variables. Indeed, sometimes the derivation
procedure is basically a trial and error one with the
help of inspiration, experience and fortune.

Actually, all solutions given in this paper can be
proven easily by substituting them into the governing
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equation.

1 Axisymmetrical heat conduction equation
with variable thermal properties in cylindrical
coordinates

The unsteady symmetrical geometrically 2-D
heat conduction governing equation in cylindrical co-
ordinates is

o8 19 28 &) 20
o5 = a2

-
where density p, specific heat C, and thermal con-

x

ductivity K are commonly inconstant. They could be
functions of coordinates (r, 2 ) or functions of tem-
perature § (nonlinear case), but are always positive.
In addition, ¢ is time coordinate.

For geometrically 1-D case and only considering
radial variation, Eq.(1) can be simplified as

9 _ 1o 9_0)
“’C”at“rar Kar'

(1a)

r

2 Unsteady geomefrically 1-D heat conduc-
tion solutions with thermal properties varying
along radial direction

When oC, = f(r), K=K(r) and applying the
method of separating variables with addition 8 =
T(t)+ R(r), substituting these relations into Eq.
(1a) and separating variables, we obtain

T = = KRV, (@)

where each C; represents different constants. From
left hand side of Eq. (2), it is deduced that

T = Clt. (3)
From right hand side of Eq. (2), it is derived that

R = cljmdr. (4)

rK(r)
Then the final result with thermal properties varying
along radius is

i rf(r)dr

K dr. (5)

6 — c1z+clj

Eq. (5) is a kind of analytical solution of basic
heat conduction Eq. (1la) represented with integra-
tion. There will be different solutions with different
thermal property distributions. However, for more
evidently representing physical relation and more suit-
able to be a benchmark solution, it is better to have
an algebraically explicit analytical solution. It can be
done when f{(r) and K (7 ) have a matchable rela-

tion. Some concrete cases are given in the following
paragraphs.

When the common method of separating vari-
ables is applied: § = T(#)* R (r), substituting this
relation as well as pC, = f(r) and K = K (r) into
Eq. (la), we obtain

™ _ 1 4 .
T = CIO = rf(r)R dr TK(r)R] (6)
and the solution is
0 = Cllecmt * R, (7)

where R is the solution of the following ordinary dif-
ferential equation:
R* +[K(r) + rK'(#)IR/[rK(r)]
= Cyf(r)R/K(r). (8)

Since the solution (7) obtained by the common
method of separating variables includes an ordinary
differential equation (8), but the solution (5) ob-
tained by the method of separating variables with ad-
dition only includes integrations, the last method can
derive algebraically explicit analytical solutions easier.

When thermal properties are only functions of
radius, Eq. (1a) is linear, then the sum of solutions
of both separating methods is the solution of Eq. (1a)
also.

2.1 Solutions with pC, = f(r) and K(r) =k/r

(k is a constant)

According to Eqs. (5), (7) and (8), and replac-
ing Cyg and Cy; with C4 and Cs, the solutions can be
simplified as

6 = Cyt + Clﬂrf(r)drdr/k + C5eC“t * R(r),
(9)

where R is the solution of the {ollowing ordinary dif-
ferential equation:

R'(r) = Cyrf(r)R(r)/k. (9a)

Actually there are infinite f(r) which can derive
algebraically explicit analytical solutions from Egs.
(9) and (9a). Some examples are illustrated as fol-

lows:
2.1.1 Solution with pC, = f(r) =m/r (m is a
constant )

Substituting pC, = m/r into Eqs. (9) and
(9a), it can be derived that
0 =Cit+Cym(r?/2+ Cyr + C3)/k

+ C5 ' exp(C4t + C4ﬂl/k7‘)
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+ Cgexp(Cyt — /mr)
(when C4 > 0),
§ =Cit + Cim(r*/2+ Cyr + C3)/k
+ exp(Cy4t)[ Cssin( y — Cym/kr)
+ Cycos( J — Cym/kr)]
{(when C, < 0),

where m and p have to be positive owing to physical

(10a)

(10b)

conditions, but C4 can be positive or negative. As an
example, the initial and boundary conditions of this
solution when Cs = 0= Cg(equivalent to the solution
derived with the method of separating variables with
addition only) can be given with Eq. (10) as fol-
lows: t =0, 8 =Cym (r?/2+ Cyr + C3)/k, it
means that the initial temperature distribution is un-
even; r=ry, 8=Cyt + Clm(rf/2+ Cyri+ C3)/k
and r=ry, 0=Cit+ Cym(rs/2+ Cyry+ Cs/k),
it means the boundary conditions are unsteady. The
initial and boundary conditions of other solutions giv-
en in the following paragraphs can be given similarly,
each solution corresponds to its own conditions. Since
the expressions of thermal properties in this solution
are a fraction with denominator r, it can only be used
for a circular ring region. Most solutions in the fol-
lowing paragraphs have the same restriction.

Owing to the limitation of space, the typical
curves of various solutions in this paper are not given.

2.1.2 Solution with oC, = f(r)=1/[r( £ C4r?/2
+Cyr+ C3)]

Similar to the previous paragraph, the solution
can be derived as follows:

o la() = pun[ U252 ]

et £ pIn[ ZEELEL N oy o

C
+ Csexp(* C4kt)[i ‘2—4r2 + Cyr + C3:|,
(11)

where g(r)=Cyr —Cyand p= C§+2C3C4; in

addition, g () has to be larger or smaller than p

8:C1t+

when the * mark in front of C4 in f(7) is chosen
positive or negative, otherwise there will be logarithm
of a negative. C,4 cannot be zero, C, and Cj3 cannot
be zero simultaneously, otherwise the denominator in

Eq. (11) would be zero.

When C,=0, poC,=1/[r(Cyr+ C3)1, the so-

lution can be deduced in a similar way:

9 =Cit + C;[(Cyr + C)HI(Cyr + C3)
—(Cyr + C3)1/(RCE) + Cs(Cyr + C3).
(11a)

The solution with C, = 0 = C; is given in the
next paragraph.

2.1.3
Co)?]

Solution with oC, = f(r)=1/Lmr(r +

The solution can be obtained with a not very dif-
ficult trial and error method as follows:

0 :Clt - Clln(r + Cé)/(kﬂl) + C2r + C3
i CSeC“z(r + Cﬁ)[lt /1+4C4/(km)]/2. (12)

The variation of pC, along r is o rapid, such
condition is very rare in practice. However, it can
still be a benchmark solution of computational heat
conduction. It is evident that the constant m has to
be positive otherwise oC, is negative; in addition, Cy4
has to be larger than — km /4, otherwise there would
be an imaginary number in the index.

2.1. 4 Solution with pC, = f (r) = C,sec?

[JC,C/QRY(r +C3) 1/ r

The solution is

2C C,C

6 = Clt—_c:ln{cos[ / 22k 4(r+C3)}
ca . |2C3k C,C

+ C74+ Cse ™+ _C4 tan[ sz 4(, +C3) |-

(13)

By selecting the value of various constants, the varia-

+ C6r

tion of pC), can be increasing or decreasing along r di-
rection. C, and C4 of this solution have to be larger
than zero in order to avoid unreasonable pC, or zero
denominator.

2.1.5 Solution with pC,= f(r)=C3r™

Commonly the variation of pC, in radial direction
is not serious, then the absolute value of m is small.

Using the method of separating variables with
addition, a solution can be derived with abovemen-
tioned pC, distribution.

0 =Cyt + C,Cyr™/k(m +2)(m +3)]

+ Cyr + Cy. (14)

Actually, when m = — 1, the solution is the de-
generation form of Eq. (10a) or (10b). When m =
-2 or —3, Eq.(14) is ineffective, and the special
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solution of such cases are
8 = Cit + (CyCsrlur)/k + Cyr + Cg(14a)
and
8 =Cit —(CyCslnr)/k + Car + Cy
+ Cgelp 1 IIGER2 (14b)

respectively. Eq. (14b) is a special case of Eq. (12)
also.

When m =0, it means pC, = Const and K ~ 1/
r, the solution of this case is

8 = Cyt + CiC3r%/(6k) + Cyr + Cg. (14c)

From Eg. (14c¢), it is understood that even pC,
is a constant there is still a solution with very high
temperature variation in radial direction; of course it
needs some defined boundary conditions and K ~ 1/
r.

2.1.6 Solution with oC, = f(r) = Cge"*

r

Similar to the previous paragraph, commonly the
variation of oC, in radial direction is not serious, so
the absolute value of Cj is small.

Using the method of separating variables with
addition, the solution is deduced as

0 = Cit + Cy+ Car + C1Cse (r — 2/ C3)/ (KC2),
(15)
where C370 (equivalent to pC,7Const). Otherwise

there would be a zero denominator.
When C; =0, the solution is Eq. (14c).
2.2 Solution with pC, = f(r) and K =g(r)/r

Similar to the derivation of Egs. (9) and (9a),
the solution is

! rf(r)dr

Sy At Cpe "R(7),

(16)

where R( ) is the solution of the following ordinary

§ = C11+C1J

differential equation
R+ g (rYR'/g(r) — Ciyorf(r)R/g(r) = 0.
(17)

Of course, Eqs. (9) and (9a) are the special cas-
es of Eqs.(16) and (17). There are many combina-
tions of f(r) and g(r) which can obtain algebraical-
ly explicit analytical solutions of Egs. (16) and (17).
Some examples are given as follows.

2.2.1 Solution with pC, = f(r) = Cﬁecsr and K =
C,r
C4e 3 /r

Since the variation of oC, and K in radial direc-
tion is commonly small, the absolute values of Cs and
C'; are small.

Substituting the expressions of pC, and K into
Eq.(16) and applying only the method of separating
variables with addition ( C;; =0), we have

C1C6 e(CS‘Ca)r‘ 1 1

b=Cir Gt e ol e
Q*(‘Jr
"‘CSe ’ (18)

where C4 and Cg are positive values to satisfy pC, and
K heing positive; C3 and Cs cannot be zero and C3;7
Cs, otherwise there would be a zero denominator; C,
has to be large enough to maintain the temperature
# >0 in the interested region.

When C3=0, C5=0 or C3= Cs7#0, the spe-

cial solutions are derived as follows.

For C3=0, (i.e. K~1/r), the solution is ac-
tually the same as that in paragraph 2.1.6, the %2 and
C; in this paragraph is equivalent to C4 and Cs in
paragraph 2.1.6.

For Cs=0, (i.e. pC,=Const= Cg) and C;7*

0, we obtain

0 = Clt/C6 + C,
— Cre (P 4 2r/Cy +2/CE1/(2C;5Cy)
— Cre Y/ Cs. (18a)

For C3= C570, using both methods of separat-
ing variables, it is obtained from Eqgs. (16) and (17)
that
6 =Cit + Cy+ C1Cer/(C5Cy)

~ Cre Y/Cy + 8y, (18b)
where the 0, expressions are
Cot () CoraC,C/C-Cr/2
01 =e 10 [Cge
4 Coe ! J C§+4(‘6C10/C4+C3)r/2]
when C3+4C4C 1/ C4>0, (18¢)

8, :ecml—c3r/23CgCOS[ /— (C§ +4CsC19/ Cs)r/2])
+ CgSil’l[ f* (Cg + 4C6C10/C4)7‘/2]%
when C3 +4C¢Cio/ C4<0,

C. t~C.r/2
01 = e 10 3" (Cg + Cgr)
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when C}+4C4Cyo/C4=0.

2.2.2 Solutions with pC, = f(7r) = C3r” and K =

C4r[_1

As mentioned above, the variation of pC, and K
in radial direction is small, then the absolute value of
m is small and /=1, C; and C, are positive.

Substituting the expressions of pC, and K into
Eq. (16) and using the method of separating vari-
ables with addition (C,; =0), it is deduced that

§ =Cyt + Cyt+ CCyrm*37l/
LCilm +2)(m +3-1) = Cor /(1= 1) |,
(19)
where m# = =2, {Fm + 3 and [#1. Otherwise

there would be a zero denominator.

When m = — 2, with a similar derivation, a spe-
cial solution can be obtained as the following;
8 =Cit/C3+ C,
+ Cir' nr = 1/(1 - D)/[C(1 - 1)]
+ Cor/ (- 1). (19a)

Eq. (19a) is still ineffective when K =
Const (/=1). In this case, another solution can be
deduced directly from Egs. (16) and (17) using both
methods of separating variables as follows:

6 = le/C3 + Cz + Cl(lnr)z/(2C4)

+ C-;lnr + ClleCmI/Cth Cm/C‘. (lgb)

The special solution with only I =1(m# +2) is
0 = Clt/C3 + Cz + Clrm+2/[C4(m + 2)2]

+ Csinr. (19¢)

When [ = m + 3, the following explicit analyti-
cal solution is derived with a similar procedure:

7 :Cll + C2 + C1C3lnr/[C4(/ - 1)]
+ Crl /(1 - 1)

1-1¢ Ju-0+ac, c/c, 12
+ Cllec“’zr[ ¢ )+ 0 3/ 4]/ . (19d)

2.2.3 Solution with pC, = pe”/r and K = ke /r

Applying both methods of separating variables, a
solution is derived as

8 =Cit+Cypr/kl + C; + 04, (20)

where the expression of ¢, is

/2
C.t (=1+ J"+4C p/k)r/2
8, =e [ Cge 1
)
-+ l+4Cmp/k)r/2]

+ C7e

when 12> ‘_4C10P/k,
6, = 0" " Cocos( [ - 4C 1 p/k — 12r/2)
+ Cysin(y — 4Cop/k — 12#/2)]  (20a)

when (2< —4C o p/k,

Cpt=1r/2

(C6 + C7r)

(91 = €
when 2= —4Cyyp/k.

If applying the method of separating variables
with addition only (Cs=0= C5), a very simple tem-
perature distribution and its initial and boundary con-
ditions are obtained—linear relations with both time
and geometric coordinates, it is a special characteristic
of this solution.

2.3 Deriving analytical solutions in cylindrical coor-
dinates with known analytical solutions in rectangular
coordinates

Comparing the governing equation (1a) in cylin-
drical coordinates with the following governing equa-
tion (21) in rectangular coordinates,

a0 9 o0
pcpa:a—l( 8_1) (21)

It can be concluded that for the analytical solu-
tions 6 (¢, r) in rectangular coordinates satisfying
Eq. (21) obtained in Ref. [3], if we replace x,
pC,(x) and K () in these solutions in rectangular
coordinates with r, 70C,(r) and rK (), then some
analytical solutions in cylindrical coordinates satisfy-
ing governing equation {1a) can be obtained.

For example, for the 4th solution in Ref. [3],
choosing the constants / = n =0, then an algebraical-
ly explicit analytical solution in cylindrical coordinates
with volumetric specific heat pC, = f(r) = pr + m
and thermal conductivity K = jr + k can be obtained
directly

6 =Cit + Clpr®+ (3jm — 2kp)r/j
+ (2k%p = 3jkm)InGr? + kr)/(2;2)1/(65)
+ Coln | jr/(Gr + k) 1. (22)

This solution can be used for solid cylinders as
well. It can be derived with the approach given in
Section 2.2 also.

3 Nonlinear unsteady geometrically 1-D heat
conduction solutions

When volumetric specific heat pC, and /or ther-
mal conductivity K are functions of temperature, the
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governing equation {la) becomes nonlinear. It is
more difficult to derive algebraically explicit analytical
solutions. In addition, the solutions in this case can-
not be superposed owing to the nonlinearity.

Some algebraically explicit analytical solutions
for nonlinear cases are given as follows.

3.1 Solutions when volumetric specific heat is a
function of temperature

The derivation approach is about the same as
previously described, however, the matching of ther-
mal properties has to be paid more attention to.

3.1.1 Solution with volumetric specific heat being a
power function of temperature and thermal conductiv-
ity being a constant

The given conditions are pC, = p§™ and K =k =
Const. Substituting these conditions into governing e-
quation (la) and applying the common method of
separating variables § = T(t)*R(r), we have
‘kngflT/ =C = RI,SH + rRIi,n-
From left hand side of Eq. (23), it is easy to deduce

1/m
T = [“C%(t venl (24)

(23)

The right hand side of Eq. (23) is a second order
ordinary differential equation including independent
variable r, dependent variable R and its first order
and second order derivatives, and in mathematic
handbocks there is not an already known general
method to solve such equation. However, according
to the expressions of volumetric specific heat and
Eq.(23), it can be guessed that the R is a power
function of ». Assuming R = ar® (o and § are con-
stants to be determined )} and substituting R expres-
sion into Eq. (23), the final result is

4 v 1/ m Yy
C17712 T ’ (25)

-

Multiplying Eqgs. (24) and (25), an algebraical-
ly explicit analytical solution of nonlinear equation is
obtained

4k (¢t + C)
0 = [——2—2— ) (26)
mpr

When m is larger, the variation of specific heat
with temperature is more serious. Then the tempera-
ture variation with time and geometry coordinates is
smaller. Solution (26) represents this physical phe-

nomenon.

Since the specific heat and thermal conductivity
cannot be zero, and the volumetric specific heat is
variable, the constants £, p and m cannot be zero.

3.1.2 Solution with volumetric specific heat being
power function of temperature and thermal conductiv-
ity being function of radius

If the given conditions are pC, = pf™ and K =
kr, the material varies in radial direction which intro-
duces variable thermal conductivity. Applying the ap-
proach similar to the one mentioned above, it is de-
rived that

5 [(1 - m)k(s + c2)]1/'"

mpr

(27)

If the thermal conductivity is inversely propor-
tional to r* K = k/r, the solution can be deduced as
3k(3+ m)(¢ + CHY
0:[ ( '")3 2} . (28)
mpr
Comparing three algebraically explicit analytical solu-

tions with different variation of thermal conductivity
with radius Eqgs. (26) ~ (28), some relations can be
found, for example, the influence of variation of in-
dex of r on the solutions. It can be estimated that
when the variation of K with » is between the linear
and inverse proportion and not a constant, the solu-
tion condition will be a case between the abovemen-
tioned three solutions. However, it has to be men-
tioned that their initial and boundary conditions are
different.

3.2 Deriving analytical solutions in cylindrical coor-
dinates with known analytical solutions in rectangular
coordinates

Similar to what described in Section 2. 3, for
nonlinear heat conduction equations it is also able to
use known analytical solutions in rectangular coordi-
nates to obtain analytical solutions in cylindrical coor-
dinates. In this case, both volumetrically specific heat
and thermal conductivity are functions of temperature
and radius. Owing to the limitation of space, only
one example is given as follows:

oC, = mew/r,
K = ke?/r,
0= Cikt/m =+ JC/lr + Cy, (29)

or

8 = Cikt/m + Inlcosh[ / CiI1(r + C)]/ 1 + C,.
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Two different solutions given by Eq. (29) are
corresponding to different initial and boundary condi-
tions. In addition, C; has to be larger than zero. In
the first solution of Eq. (29) 8 is a linear function of
t and r, it is very suitable to be a benchmark solution
of computational heat transfer.

4 Analytical solution of unsteady geometri-
cally 2-D heat conduction

The governing equation (1) of unsteady geomet-
rically 2D heat conduction is actually a mathematical
3-D problem. Therefore, it is more difficult to derive
its algebraically explicit analytical solutions. Some so-
lutions are given in following paragraphs for variable
thermal properties (both volumetric specific heat and
thermal conductivity are functions of coordinates) and
nonlinear case ( thermal properties are functions of
temperature also).

4.1 Analytical solutions for variable thermal proper-

ties
4.1.1 Solution with thermal conductivity being
constant

If K=#%=Const, and pC, = R(r) + Z(z), i.
e. the volumetric specific heat varies in both radial
and axial directions owing to the variation of the ma-
terial composition with neglecting the variation of
thermal conductivity, then a kind of solutions can be
derived with the method of separating variables with
addition as follows:

) :%[J %Jerrdr + JIZd:d:]

(&)

2

2
r

2

+ Cglnr — :2} + Cyz + Cs.

(30)

+ Cit +

Since R(r) and Z(z) are arbitrary functions,
the number of solutions of Eq. (30) is infinite. As an
example, if the volumetric specific heat variations in
both radial and axial directions are linear, R ={ + mr
and Z=n + pz, then an algebraically explicit analyt-
ical solution can be expressed as:

G mrd a5, p 3)
6—k 4+ 9 +2*+6” + Cyt
C 2
+ 555 + Celnr = 27} + Cyz + Cs.
(30a)

When degenerating into geometrical 1-D case,

Z(z) in Eq.(30) has to be equal to zero. Eq. (19¢)

in paragraph 2.2.2 can be deduced from Eq. (30a)
and it is a special case.

4.1.2 Solution with pure linear temperature distri-
bution

If there is the following relation between the vol-
umetric specific heat and the thermal conductivity

o= [l ZE Kl e, &Ko, G

ok | K
then an extremely simple solution with temperature

or r

being a linear function of time as well as geometrical
coordinates can be derived as follows:

0 = C1t+C27‘+C3Z+C4. (32)

Since the function expressions of K (and then
oC,) can be infinite and there is only derivation in
Eq.(31), therefore, the deduction of Egs. (31) and
(32) means it is very easy to find out the matching of
©oC, and K which can obtain a pure linear tempera-
ture distribution along with both time and geometrical
coordinates. The solution in paragraph 2.2.3 (ex-
cluding 8,) is actually a special case of this para-
graph.

4.2 Analytical solutions of nonlinear case

Similar to that described in Section 3.2, it is
able to derive nonlinear unsteady geometrically 2-D
heat conduction solutions in cylindrical coordinates
from known solutions in rectangular coordinates in
Ref.[2]. Some examples are given here.

4.2.1 Solution with oC, = m ew/r and K = kew/r
PLp

In this case, the variations of volumetric specific
heat and thermal conductivity with temperature have
the same rule, the variations of both thermal proper-
ties with radial coordinate have the same rule also.
The absolute value of / is small since the variations of
thermal properties are commonly small. An alge-
braically explicit analytical solution can be found as
the following:

6 = Clkl/ﬂl + C3/lr * (Cl - C3)ZZ + C,.

. (33)

In this solution, temperature variation is linear
along with all three independent variables, it is a good
benchmark solution. By the way, the first solution of
Eq. (29) is a special case of this solution.

Another possible solution is

8 = Cikt/m + Inlcosh[ J C3i(r + Cy) 11/
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+Infcosh[+ J(C; — C3)i(z+ C) /1 + Cs.
(34)
The second solution of Eq. (29) is the 1-D simplified
case of Eq.(34).

4.2.2 Solution with pC, = mb'/r and K = &6'/ r

Similar to previously mentioned, the variation
rules of volumetric specific heat and thermal conduc-
tivity with temperature and radius are the same. A

possible solution is as follows:

6 =exp[clk(t + CZ)/"l + N C3/(Z + 1)(7’ + C4)

+ J(Cr = C)/(L+ Dz + Cs) + Cel. (35)
Eq. (35) is not suitable when /= —1. For /= -1,
the expression has to be changed into

0 =expl Cik(t + Cy)/m + C,Cy(r + C)2/2
+ Ci(1 - Cy)(= + Cs)/2 ). (36)

5 Conclusion

About 20 kinds of algebraically explicit analytical
solutions for unsteady heat conduction equations in
axisymmetrical cylindrical coordinates with variable
thermal properties are given. They can be the bench-
mark solutions to develop computational heat transfer
and check the numerical solutions.
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